Teaching Total - Lectures: - Tutorials:	Title of Course		Low level programming			
Hours per Course: 60 30 30 30	Semester		Spring			
ECTS Credits The content of education The aim of the course is to acquire knowledge, skills and social competences in the field of; computer operation at the processor and memory level, creating programs in C and assembler languages, using knowledge about the operation of the computer processor and memory to optimize programs, recognizing and fixing problems with programs written in low-level programming languages. Program Lectures: • CISC assembler (x86 family (32- and 64-bit for Linux systems) • RISC assembler (Atmel AVR family (8-bit, modified Harvard architecture), Arduino platform) • RISC assembler (ARM family (32- and 64-bit), Raspberry Pi platform) Tutorials: • Pointers. Pointer operations. Dynamic memory allocation. • Memory management methods. Implementing different memory management strategies. Custom allocators. Detecting and fixing memory leaks. Using valgrind tool. • Creating multi-file projects. Build scripts. Make and cmake tools. • Detecting memory errors and undefined behavior. Optimizing programs. Conditions of completion Lectures: test with closed questions; +1 for correct answer, -1 for wrong answer, 0 for leaving question unanswered (minN points, max. +N points). Openended questions are also possible, scored depending on the level of difficulty of the question (min. 0 points, max. M points). > 86% of N+M: A > 72% of N+M: B > 58% of N+M: C > 44% of N+M: D = 30% of N+M: E < 30% F Tutorials: E od D - complete all small project during the semester. For better mark (from C to A) complete final project. Final mark: average grades from lectures and tutorials (positive mark from A to E is required for both of them).	_		Total	- Lectures:	- Tutorials:	
The content of education Aims of Course The aim of the course is to acquire knowledge, skills and social competences in the field of; computer operation at the processor and memory level, creating programs in C and assembler languages, using knowledge about the operation of the computer processor and memory to optimize programs, recognizing and fixing problems with programs written in low-level programming languages. Program Lectures: • CISC assembler (x86 family (32- and 64-bit for Linux systems) • RISC assembler (Atmel AVR family (8-bit, modified Harvard architecture), Arduino platform) • RISC assembler (ARM family (32- and 64-bit), Raspberry Pi platform) Tutorials: • Pointers. Pointer operations. Dynamic memory allocation. • Memory management methods. Implementing different memory management strategies. Custom allocators. Detecting and fixing memory leaks. Using valgrind tool. • Creating multi-file projects. Build scripts. Make and cmake tools. • Detecting memory errors and undefined behavior. Optimizing programs. Conditions of completion Lectures: test with closed questions; +1 for correct answer, -1 for wrong answer, 0 for leaving question unanswered (minN points, max. +N points). Openended questions are also possible, scored depending on the level of difficulty of the question (min. 0 points, max. M points). > 86% of N+M: A > 72% of N+M: B > 58% of N+M: C > 44% of N+M: D = 30% of N+M: E < 30% F Tutorials: E od D - complete all small project during the semester. For better mark (from C to A) complete final project. Final mark: average grades from lectures and tutorials (positive mark from A to E is required for both of them).	Hours per Course:		60	30	30	
Aims of Course The aim of the course is to acquire knowledge, skills and social competences in the field of: computer operation at the processor and memory level, creating programs in C and assembler languages, using knowledge about the operation of the computer processor and memory to optimize programs, recognizing and fixing problems with programs written in low-level programming languages. Program Lectures: CISC assembler (x86 family (32- and 64-bit for Linux systems) RISC assembler (Atmel AVR family (8-bit, modified Harvard architecture), Arduino platform) RISC assembler (ARM family (32- and 64-bit), Raspberry Pi platform) Tutorials: Pointers. Pointer operations. Dynamic memory allocation. Memory management methods. Implementing different memory management strategies. Custom allocators. Detecting and fixing memory leaks. Using valgrind tool. Creating multi-file projects. Build scripts. Make and cmake tools. Detecting memory errors and undefined behavior. Optimizing programs. Conditions of completion Lectures: test with closed questions; +1 for correct answer, -1 for wrong answer, of or leaving question unanswered (minN points, max. +N points). Openented questions are also possible, scored depending on the level of difficulty of the question (min. 0 points, max. M points). 86% of N+M: A 72% of N+M: B 58% of N+M: C 44% of N+M: D 30% of N+M: E 30% F Tutorials: E od D - complete all small project during the semester. For better mark (from C to A) complete final project. Final mark: average grades from lectures and tutorials (positive mark from A to E is required for both of them).	ECTS Credits		4			
in the field of: computer operation at the processor and memory level, creating programs in C and assembler languages, using knowledge about the operation of the computer processor and memory to optimize programs, recognizing and fixing problems with programs written in low-level programming languages. Program Lectures: • CISC assembler (x86 family (32- and 64-bit for Linux systems) • RISC assembler (ARM family (8-bit, modified Harvard architecture), Arduino platform) • RISC assembler (ARM family (32- and 64-bit), Raspberry Pi platform) Tutorials: • Pointers. Pointer operations. Dynamic memory allocation. • Memory management methods. Implementing different memory management strategies. Custom allocators. Detecting and fixing memory leaks. Using valgrind tool. • Creating multi-file projects. Build scripts. Make and cmake tools. • Detecting memory errors and undefined behavior. Optimizing programs. Conditions of completion Lectures: test with closed questions; +1 for correct answer, -1 for wrong answer, 0 for leaving question unanswered (minN points, max. +N points). Openended questions are also possible, scored depending on the level of difficulty of the question (min. 0 points, max. M points). > 86% of N+M: A > 72% of N+M: B > 58% of N+M: B > 58% of N+M: C > 44% of N+M: D = 30% of N+M: E < 30% F Tutorials: E od D - complete all small project during the semester. For better mark (from C to A) complete final project. Final mark: average grades from lectures and tutorials (positive mark from A to E is required for both of them).	The content of education					
• CISC assembler (x86 family (32- and 64-bit for Linux systems) • RISC assembler (Atmel AVR family (8-bit, modified Harvard architecture), Arduino platform) • RISC assembler (ARM family (32- and 64-bit), Raspberry Pi platform) **Tutorials:** • Pointers. Pointer operations. Dynamic memory allocation. • Memory management methods. Implementing different memory management strategies. Custom allocators. Detecting and fixing memory leaks. Using valgrind tool. • Creating multi-file projects. Build scripts. Make and cmake tools. • Detecting memory errors and undefined behavior. Optimizing programs. **Conditions of completion** **Conditions of completion** **Lectures:* test with closed questions; +1 for correct answer, -1 for wrong answer, of or leaving question unanswered (minN points, max. +N points). Openended questions are also possible, scored depending on the level of difficulty of the question (min. 0 points, max. M points). **> 86% of N+M: A		in the prog	in the field of: computer operation at the processor and memory level, creating programs in C and assembler languages, using knowledge about the operation of the computer processor and memory to optimize programs, recognizing and			
of for leaving question unanswered (minN points, max. +N points). Openended questions are also possible, scored depending on the level of difficulty of the question (min. 0 points, max. M points). > 86% of N+M: A > 72% of N+M: B > 58% of N+M: C > 44% of N+M: D = 30% of N+M: E < 30% F Tutorials: E od D - complete all small project during the semester. For better mark (from C to A) complete final project. Final mark: average grades from lectures and tutorials (positive mark from A to E is required for both of them).	Program	 CISC assembler (x86 family (32- and 64-bit for Linux systems) RISC assembler (Atmel AVR family (8-bit, modified Harvard architecture), Arduino platform) RISC assembler (ARM family (32- and 64-bit), Raspberry Pi platform) Tutorials: Pointers. Pointer operations. Dynamic memory allocation. Memory management methods. Implementing different memory management strategies. Custom allocators. Detecting and fixing memory leaks. Using valgrind tool. Creating multi-file projects. Build scripts. Make and cmake tools. Detecting memory errors and undefined behavior. 				
Teacher PhD. Piotr Fulmański		0 for ended the qu > 86% > 72% > 58% > 44% >= 30% C to Final	0 for leaving question unanswered (minN points, max. +N points). Openended questions are also possible, scored depending on the level of difficulty of the question (min. 0 points, max. M points). > 86% of N+M: A > 72% of N+M: B > 58% of N+M: C > 44% of N+M: D >= 30% of N+M: E < 30% F Tutorials: E od D - complete all small project during the semester. For better mark (from C to A) complete final project. Final mark: average grades from lectures and tutorials (positive mark from A			
	Teacher	PhD. Piotr Fulmański				